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Supplemental Results 

REC-8 is required for meiotic crossover recombination 

Because sister chromatids separate equationally during anaphase I of rec-8(ok978) 

hermaphrodites, meiotic recombination on the X chromosome was assayed as follows: 

rec-8(ok978) IV; dpy-3(e27) unc-3(e151)/+ + X hermaphrodites were mated with qIs54 

males, and the frequency of Unc non-Dpy and Dpy non-Unc animals was quantified in 

the triploid male progeny (genotype 3A:2X). In the absence of recombination, these 

animals would bear a sister chromatid from each X homolog and therefore be of 

genotype dpy-3(e27) unc-3(e151)/+ +. If CO recombination occurs but homologs later 

separate because of a defect in short arm cohesion, approximately 25% of animals in 

which recombination occurred in the ~40 cM that separate dpy-3 and unc-3 should be 

Dpy non-Unc or Unc non-Dpy. Because the progeny of rec-8 mothers are occasionally 

Unc or Dpy, a parallel control was done using rec-8(ok978) single mutants. 4.5% 

(n=223) of males produced by control animals were Unc non-Dpy or Dpy non-Unc, 

compared to 3.5% (n=257) of males produced by the experimental set of worms. Thus, 

CO recombination does not occur at appreciable levels during oocyte meiosis of rec-8 

mutant worms. 
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Supplemental Methods 

Validation of ChrII-RFLP data 

Data for an entire 96-well PCR plate was discarded if any digests of DNA from control 

wells containing n1012 and n1020 homozygous embryos were incomplete. Data from all 

embryos collected from a single cross (mutant mother x him-8; mIs10 male) were 

discarded if all of the embryos from that cross had only one of the two ChrII-RFLPs, 

because the mother was not trans-heterozygous for the RFLP alleles. Data for a single 

PCR well were discarded if an uncut band was not detected in the Spe I Xba I double 

digest, because the embryo analyzed was not outcross. 
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Figure S3. rec-8 mutations fail to block AE assembly and SCC. (A) In wild-type worms, HIM-3 and 

SYP-1 are present between synapsed pachytene chromosomes. HIM-3 is present in a cruciform on 

each bivalent in the -1 oocyte. Although HIM-3 levels are reduced in rec-8(ok978) mutants, long 

stretches of HIM-3 are clearly visible on pachytene chromosomes. SYP-1 also loads on pachytene 

chromosomes, but tracks of SYP-1 staining often appear fragmented. (B) Depletion of REC-8 by RNAi 

results in similar phenotypes to those we observed in rec-8(ok978) animals. SMC-1 and HTP-3 still 

associate with meiotic chromosomes in rec-8(RNAi) worms; however, SMC-1 levels appear reduced 

compared to those observed in wild-type worms. 12 univalents are present in diakinesis nuclei. Similar 

phenotypes are observed when RNAi is used to further reduce REC-8 activity in rec-8(ok978) 

mutants, consistent with the prediction that ok978 is a null or strong loss-of-function allele (Hayashi et 

al. 2007). The meiotic phenotypes of rec-8 mutants are not enhanced by a deletion allele of lig-4, 

consistent with the possibility that SCC is required to ensure that a sister chromatid is available for use 

as a repair template. 
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Figure S4. Disrupting REC-8, HTP-3, or HTP-1/2 function reduces the lethality of spo-11(me44) 

mutants. (A) Higher embryonic viability is observed in the self progeny of spo-11(me44) rec-8(ok978) 

double mutants than the self progeny of spo-11(me44) single mutants. (B) Weak suppression of spo-

11(me44) results from RNAi-mediated depletion of REC-8. (C) The htp-3(y428) allele results in 

increased viability in the self progeny of spo-11(me44) worms. This suppression is recessive, as 

similar levels of embryonic lethality occur in the progeny of htp-3(y428) ccIs4251/+; spo-11 mutant 

hermaphrodites as in spo-11 controls. (D) Most of the self progeny of htp-3(y428) mothers hatch. 

Similar levels of hatching are observed in the progeny of htp-3(y428); spo-11(me44) animals (C), 

consistent with the requirement of HTP-3 in DSB formation. (E) Embryonic viability is markedly higher 

in the broods of htp-1 htp-2 double mutants than in htp-1 or him-3 single mutants, consistent with our 

data showing that equational sister separation occurs in htp-1 htp-2 animals, but not in htp-1 or him-3 

animals. (F) Synergistic lethality occurs in the self progeny of htp-3(y428); rec-8(ok978) double 

mutants. Levels of embryonic lethality in the progeny of htp-3/+; rec-8 animals are similar to those 

observed in rec-8 single mutants, consistent with the recessive behavior of the htp-3(y428) allele. (G) 

RNAi depletion of HTP-3 in a rec-8(ok978) mutant worm results in dramatically higher levels of 

embryonic lethality than does depletion of HTP-1/2 or HIM-3, consistent with the involvement of HTP-3 

in the loading of meiotic cohesin. 
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Figure S5. The redundant kleisin paralogs COH-3 and COH-4 are required for meiotic SCC. (A) 

Animals mutant for the coh-4 deletion allele tm1857, the coh-3 deletion allele gk112, or the coh-3 

Mos1 transposon insertion allele ttTi10553 produce healthy broods of hatching embryos. In contrast, 

most embryos produced by coh-4(tm1857) coh-3(ttTi10553) double mutants die before hatching, as 

occurs in coh-4(tm1857) coh-3(gk112) double mutants (Fig. 1E). Thus, COH-3 and COH-4 are likely 

redundant. Almost all progeny of coh-4(tm1857) coh-3(ttTi10553) / + heterozygous mothers hatch, 

suggesting that COH-3 and COH-4 are not essential during mitotic divisions (see also Supplemental 

Table 1). (B) Depleting COH-3/4 by RNAi does not result in equational sister separation in meiosis I. 

Instead, homologs appear to segregate randomly. (C) Discontinuous staining of AE proteins is 

detected on pachytene chromosomes of coh-4(tm1857) coh-3(ttTi10553) double mutants and coh-

3/4(RNAi) animals. In contrast, AE proteins are detected in polycomplexes when COH-3 and COH-4 

are disrupted in rec-8(ok978) mutants. 
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Figure S6. The C. elegans Mei-S332/Shugoshin ortholog SGO-1 appears dispensable for the 

accurate segregation of meiotic chromosomes. Embryonic lethality (A) and male production (B) are 

not observed in animals mutant for either of two sgo-1 deletion alleles or following sgo-1(RNAi). (C) 

The high levels of embryonic lethality in the broods of spo-11(me44) mutants is not reduced by RNAi 

of sgo-1. 
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Figure S7. The htp-3 deletion allele tm3655 phenocopies htp-3(y428). (A) Similar levels of embryonic 

lethality occur in the broods of htp-3(tm3655) and htp-3(y428) mutants. (B) htp-3(tm3655) disrupts 

association of the known AE proteins HTP-3, HTP-1/2, and HIM-3 with the axes of meiotic 

chromosomes, and the SC central element protein SYP-1 is present in polycomplexes. A similar 

phenotype occurs in htp-3(y428) mutants, suggesting that htp-3(y428) is a null or severe loss-of-

function allele (Fig. 8). (C) REC-8 and SMC-1 are undetectable on meiotic chromosomes of htp-

3(tm3655) mutants or htp-3(y428) mutants (Fig. 9). 
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Figure S8. HTP-3 is required for AE assembly in transition zone nuclei. (A) HTP-3 is present in both 

premeiotic nuclei and meiotic nuclei, but first associates with axial structures in transition zone nuclei  

(leptotene and zygotene stages of prophase I). Meiotic loading of HTP-3 does not require HTP-1/2 or 

HIM-3. SYP-1 is present in polycomplexes in transition zone nuclei of htp-3(y428) mutants, as in htp-

3(RNAi) animals (Goodyer et al. 2008). (B,C) HTP-3 is required for the association of HTP-1/2 and 

HIM-3 with meiotic chromosomes. (D) Like HTP-3, REC-8 is present in premeiotic nuclei but first 

appears enriched on the axis in transition zone nuclei. REC-8 is detectible in transition zone nuclei of 

him-3 and htp-1 htp-2 mutants; in contrast, REC-8 is present at markedly reduced levels in transition 

zone nuclei of htp-3(y428) animals, although it is present in premeiotic nuclei. 
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Figure S9. Bivalent structure changes around the time of fertilization and breakdown of the oocyte 

nuclear envelope. Before fertilization and NEBD, a slight gap separates the four chromatids in DAPI-

stained nuclei (arrowheads). In contrast, separation between sisters is not visible after fertilization 

triggers NEBD and entry into prometaphase, but separation between homologs is obvious 

(arrowheads). AIR-2 (green) marks the short arm of the wild-type bivalent, where SCC will be released 

at anaphase I to allow homologs to separate. Before NEBD, a gap is visible between the two sister 

chromatids in the univalents of spo-11(me44), rec-8(ok978), and htp-3(y428) animals (arrowheads). 

After NEBD, the sisters are not visible in spo-11 mutants, and our data indicate that sisters are held 

together while homologs segregate randomly in anaphase I. In contrast, a visible gap persists 

between sister chromatids after NEBD in rec-8 and htp-3 mutants (arrowheads), sister chromatid co-

orientation fails and premature release of SCC in anaphase I causes equational separation of sister 

chromatids. 
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Supplemental Table 1.  Survival to adulthood of strains used in this study 
Genotype a Embryonic Viability b Survival to Adulthood c 
N2 98%  98%  

rec-8(ok978) 85%  54%  

spo-11(me44) 10%  7%  

ccIs4251[myo-3::GFP] 97%  98%  

ccIs4251[myo-3::GFP]; rec-8(ok978) 78%  34%  

ccIs4251[myo-3::GFP]; spo-11(me44) 7%  5%  

htp-3(y428) ccIs4251[myo-3::GFP] 88%  39%  

htp-3(y428) ccIs4251[myo-3::GFP]; rec-8(ok978) 24%  4%  

htp-3(y428) ccIs4251[myo-3::GFP]; spo-11(me44) 88%  39%  

htp-1(gk174) htp-2(tm2543) 56%  15%  

htp-1(gk174) 8%  5%  

him-3(gk149) 10%  7%  

coh-4(tm1857) coh-3(gk112) 12%  7%  

+ /coh-4(tm1857) coh-3(gk112) d 100%  99%  

rec-8(ok978); coh-4(tm1857) coh-3(gk112) 0.10%  0%  
 

a Hermaphrodites of the genotypes listed were mated with him-8(e1489) IV; mIs10[myo-2::gfp] males. 
b Embryonic viability was calculated as: (number of embryos that hatched)/(number of embryos laid)x100. 
c Survival to adulthood was calculated as: (number of adult worms)/(number of embyros that hatched)x100. 
d ¼ of embryos laid are expected to be coh-4(tm1857) coh-3(gk112) homozygotes. The high survival of these 
animals suggests that COH-3/4 do not have essential mitotic roles. 
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Supplemental Table 2.  Different patterns of meiotic chromosome segregation result in distinct phenotypes 
 Segregation pattern   Expected frequency of ChrII-RFLPs  Chromosome 

State  Meiosis I Meiosis II  
# of Polar 

Bodies  A and B Only A Only B Neither A or B  
Oocyte 
Ploidy 

Bivalents a  Reductional c Equational e  2  0% 50% 50% 0%  Haploid 
Univalents b  Random d Equational e  2  25% 25% 25% 25%  Aneuploid 
Univalents b  Random d None  1  25% 25% 25% 25%  Aneuploid 
Univalents b  Equational e Random f  2  25% 25% 25% 25%  Aneuploid 
Univalents b  Equational e None  1  100% 0% 0% 0%  Diploid 
Univalents b  None None  0  100% 0% 0% 0%  Tetraploid 

 

a Observed in wild-type animals. Homologs are held together by sister chromatid cohesion (SCC) and the crossover. 
b Observed in mutants that disrupt meiotic crossover recombination. Sister chromatids are held together by SCC, but homologs remain apart. 
c Homologs separate and move toward opposite spindle poles. Sister chromatids remain held together by SCC. 
d Homologs partition randomly between the embryo and the polar body. Sister chromatids remain held together by SCC. 
e Sister chromatids separate and move toward opposite spindle poles. 
f Sister chromatids partition randomly between the embryo and the polar body. 
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Supplemental Table 3.  Strains used in this study 
Strain Genotype 
RB0873 lig-4(ok716) III 
TY5074 lig-4(ok716) III;  rec-8 (ok978) / nT1 IV; + / nT1 [qIs51] V 
TY4960 rec-8(ok978) / nT1 IV; + / nT1 [qIs51] V 
TY4342 spo-11(me44) / nT1 IV; + / nT1 [qIs51] V 
TY4392 unc-119(ed3op) ruIs32[unc-119(+) pie-1::gfp::his-11] III; rec-8(ok978) / nT1[unc-?(n754) let-?] IV; + / nT1 V 
TY4393 rec-8(ok978) / nT1[unc-?(n754) let-?] IV; + / nT1 V; ruIs57[unc-119(+) pie-1::gfp::tbb-2] ? 
TY4544 rec-8(ok978) dpy-4(e1166) / nT1 IV; + / nT1 [qIs51] V 
TY4561 spo-11(me44) dpy-4(e1166) / nT1 IV; + / nT1 [qIs51] V 
TY4581 spo-11(me44) rec-8 (ok978) dpy-4(e1166) / nT1 IV; + / nT1 [qIs51] V 
TY4949 spo-11(me44) rec-8(ok978) / nT1 IV; + / nT1 [qIs51] V 
TY5001 rec-8(ok978) / nT1 IV; + / nT1 [qIs51] V; dpy-3(e27) unc-3(e151) X 
TY4939 ccIs4251[myo-3::GFP] I; spo-11(me44)  / nT1 [unc-?(n754) let-?(m435)] IV; + / nT1[qIs51] V; lin-2(e1309) X 
TY4980 htp-3(y428) ccIs4251[myo-3::GFP] / + I;  spo-11(me44) / nT1 IV; + / nT1 [qIs51] V 
TY4981 htp-3(y428) ccIs4251[myo-3::GFP] / + I;  rec-8(ok978) / nT1 IV; + / nT1 [qIs51] V 
TY4986 htp-3(y428) ccIs4251[myo-3::GFP] I / hT2[bli-4(e937) let-?(q782) qIs48] (I;III) 
TY5038 htp-3(tm3655) I / hT2[bli-4(e937) let-?(q782) qIs48] (I;III) 
TY5115 coh-4(tm1857) V 
TY4918 coh-3(gk112) V 
TY5114 coh-3(ttTi10553) V 
TY5120 + / nT1 IV; coh-4(tm1857) coh-3(gk112) V / nT1 [qIs51] V 
TY5119 + / nT1 IV; coh-4(tm1857) coh-3(TTtI10553) V / nT1 [qIs51] V 
TY5121 rec-8(ok978) / nT1 IV; coh-4(tm1857) coh-3(gk112) / nT1 [qIs51] V 
TY5122 rec-8(ok978) / nT1 IV; coh-4(tm1857) coh-3(ttTi10553) / nT1 [qIs51] V 
TY5130 htp-3(y428) ccIs4251[myo-3::GFP] I / hT2[bli-4(e937) let-?(q782) qIs48] (I;III); coh-4(tm1857) coh-3(gk112) / nT1[unc-?(n754) let-?] IV; + / nT1 V 
TY5129 htp-3(y428) ccIs4251[myo-3::GFP] I / hT2[bli-4(e937) let-?(q782) qIs48] (I;III); coh-4(tm1857) coh-3(ttTi10553) / nT1[unc-?(n754) let-?] IV; + / nT1 V 
VC0418 him-3(gk149) / nT1 IV; + / nT1 [qIs51] V 
TY4973 htp-1(gk174) / nT1 IV; + / nT1 [qIs51] V 
FM0002 htp-1(gk174) htp-2(tm2543) / nT1 IV; + / nT1 [qIs51] V 
TY4236 him-8(e1489) IV; mIs10 V 
FX2344 sgo-1(tm2344) IV 
TY4878 sgo-1(tm2443) IV 
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Supplemental Table 3.  Strains used in this study (continued) 
Strain Genotype 
CB0879 him-1(e879) I 
TY3090 him-1(h55) / unc-63(e384) I 
JK2735 qIs54 X 
TY4985 ccIs4251[myo-3::GFP] I 
TY4851 sup-9(n1012) II 
TY4852 sup-9(n1020) II 
TY5131 sup-9(n1012) II; rec-8(ok978) / nT1 IV; + / nT1 [qIs51] V 
TY4894 sup-9(n1020) II; rec-8(ok978) / nT1 IV; + / nT1 [qIs51] V 
TY4895 sup-9(n1012) II; spo-11(me44) / nT1 IV; + / nT1 [qIs51] V 
TY4896 sup-9(n1020) II; spo-11(me44) / nT1 IV; + / nT1 [qIs51] V 
TY4916 sup-9(n1012) II; rec-8(ok978) dpy-4(e1166) / nT1 IV; + / nT1 [qIs51] V 
TY4897 sup-9(n1020) II; rec-8(ok978) dpy-4(e1166) / nT1 IV; + / nT1 [qIs51] V 
TY4898 sup-9(n1012) II; spo-11(me44) dpy-4(e1166) / nT1 IV; + / nT1 [qIs51] V 
TY4899 sup-9(n1020) II; spo-11(me44) dpy-4(e1166) / nT1 IV; + / nT1 [qIs51] V 
TY4930 sup-9(n1012) II; spo-11(me44) rec-8(ok978) dpy-4(e1166) / nT1 IV; + / nT1 [qIs51] V 
TY5132 sup-9(n1020) II; spo-11(me44) rec-8(ok978) dpy-4(e1166) / nT1 IV; + / nT1 [qIs51] V 
TY4965 sup-9(n1012) II; htp-1(gk174) / nT1 IV; + / nT1 [qIs51] V 
TY4966 sup-9(n1020) II; htp-1(gk174) / nT1 IV; + / nT1 [qIs51] V 
TY4999 sup-9(n1012) II; htp-1(gk174) htp-2(tm2543) / nT1 IV; + / nT1 [qIs51] V 
TY5000 sup-9(n1020) II; htp-1(gk174) htp-2(tm2543) / nT1 IV; + / nT1 [qIs51] V 
TY4968 sup-9(n1012) II; him-3(gk149) / nT1 IV; + / nT1 [qIs51] V 
TY4967 sup-9(n1020) II; him-3(gk149) / nT1 IV; + / nT1 [qIs51] V 
TY5127 sup-9(n1012) II; coh-4(tm1857) coh-3(gk112) V/nT1[qIs51] (IV;V) 
TY5128 sup-9(n1020) II; coh-4(tm1857) coh-3(gk112) V/nT1[qIs51] (IV;V) 
TY5125 sup-9(n1012) II; coh-4(tm1857) coh-3(ttTi10553) V/nT1[qIs51] (IV;V) 
TY5126 sup-9(n1020) II; coh-4(tm1857) coh-3(ttTi10553) V/nT1[qIs51] (IV;V) 
TY4987 htp-3(y428) ccIs4251[myo-3::GFP] I / hT2[bli-4(e937) let-?(q782) qIs48] (I;III); sup-9(n1012) II 
TY4988 htp-3(y428) ccIs4251[myo-3::GFP] I / hT2[bli-4(e937) let-?(q782) qIs48] (I;III); sup-9(n1020) II 
TY4962 htp-3(y428) ccIs4251[myo-3::GFP]/+ I;  sup-9(n1012) II; spo-11(me44) / nT1 IV; + / nT1 [qIs51] V 
TY4963 htp-3(y428) ccIs4251[myo-3::GFP]/+ I;  sup-9(n1020) II; spo-11(me44) / nT1 IV; + / nT1 [qIs51] V 
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Supplemental Table 4.  Oligos used for amplification of dsRNA templates 
Name Gene Sequence (T7 in bold) 
AFS75 a rec-8 TAATACGACTCACTATAGGGGTTGTCTCTGCGGAAGT 

AFS76 a rec-8 TAATACGACTCACTATAGGGCTCAGGTAAGGCTCAACA 

AFS268 htp-3 TAATACGACTCACTATAGGAAGTCCCATCTACGGTCGTG 

AFS269 htp-3 TAATACGACTCACTATAGGCTTTGGAGGGTTTGGTTTGA 

AFS279 htp-1 TAATACGACTCACTATAGGCGTCTGGATAGGCGACATTT 

AFS280 htp-1 TAATACGACTCACTATAGGCATCTACGACGAATCGCTCA 

AFS283 him-3 TAATACGACTCACTATAGGTCCCGTTGATCTAGAGATTGAAA 

AFS284 him-3 TAATACGACTCACTATAGGACAAGAGAAGACAAAAGCACGAC 

AFS191 him-1 GCGTAATACGACTCACTATAGGGAAGGCAGAGAACAACTCGACTCAG 
AFS192 him-1 CGCTAATACGACTCACTATAGGGATCAGCAGAACCTCCGGACATA 

AFS193 b,c coh-3 5' TAATACGACTCACTATAGGATTCGTGCTCGAGAGATCGT 

AFS194 b,c coh-3 5' TAATACGACTCACTATAGGCGGTTTGGAGTTCCAGTTGT 

AFS308 b,d coh-3 3' TAATACGACTCACTATAGGTGGTCAAATACAAGTTCTGA 

AFS309 b,d coh-3 3' TAATACGACTCACTATAGGAGAAATCAGCCATTGCCAGA 

AFS79 sgo-1 TAATACGACTCACTATAGGAGCTTGTCGTCAGTCTCGGT 

AFS80 sgo-1 TAATACGACTCACTATAGGTGCAGGAGTTGATGATGGAG 
 

a dsRNA corresponding to Exons 1-4 was used for depletion of REC-8 because this 
region is not affected by the rec-8(ok978) deletion. Similar results were obtained using  
the primers and depletion regime described in Colaiácovo (2003). 
b dsRNA corresponding to nonoverlapping 5’ and 3’ regions of the coh-3 ORF with no 
significant homology gave similar phenotypes in RNAi experiments, indicating that the  
phenotypes observed did not result from off target depletion of another cohesin subunit. 
c The 1674 bp amplicon corresponds to 1263 bp of cDNA, which is 88% identical to the 
 paralogous region of the Y45G5AM.8 cDNA. 
d The 381 bp amplicon corresponds to 283 bp of cDNA, which is 89% identical to the 
paralogous region of the Y45G5AM.8 cDNA. 
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