Supplemental Material for Severson et al.

The axial element protein HTP-3 promotes cohesin loading and meiotic axis assembly in *C. elegans* to implement the meiotic program of chromosome segregation

Aaron F. Severson, Lorraine Ling, Vanessa van Zuylen and Barbara J. Meyer

Howard Hughes Medical Institute and Department of Molecular and Cell Biology,

University of California, Berkeley, CA USA

Table of Contents

Supplemental Results
Supplemental Methods
Supplemental Figure 1
Supplemental Figure 2
Supplemental Figure 3

Supplemental Figure 4 Disrupting REC-8, HTP-3, or HTP-1/2 function reduces the lethality of <i>spo-11(me44)</i> mutants.	7
Supplemental Figure 5 The redundant kleisin paralogs COH-3 and COH-4 are required for meiotic SCC.	9
Supplemental Figure 6 The <i>C. elegans</i> Mei-S332/Shugoshin ortholog SGO-1 appears dispensable for the accurate segregation of meiotic chromosomes.	11
Supplemental Figure 7 The <i>htp-3</i> deletion allele <i>tm3655</i> phenocopies <i>htp-3(y428)</i> .	13
Supplemental Figure 8 HTP-3 is required for AE assembly in transition zone nuclei.	15
Supplemental Figure 9 Bivalent structure changes around the time of fertilization and breakdown of the oocyte nuclear envelope.	17
Supplemental Figure 10 Chromosomes partition randomly during spermatogenesis of <i>rec-8</i> mutants, consistent with the possibility that both cytoplasmic divisions occur during spermatogenesis, and sister chromatids separate equationally during meiosis I and randomly during meiosis II.	. 19
Supplemental Table 1 Survival to adulthood of strains used in this study.	20
Supplemental Table 2 Different patterns of meiotic chromosome segregation result in distinct phenotypes.	
Supplemental Table 3 Strains used in this study.	22
Supplemental Table 4 Oligos used for amplification of dsRNA templates.	24

Supplemental Results

REC-8 is required for meiotic crossover recombination

Because sister chromatids separate equationally during anaphase I of *rec-8(ok978)* hermaphrodites, meiotic recombination on the X chromosome was assayed as follows: *rec-8(ok978)* IV; *dpy-3(e27) unc-3(e151)/+* + X hermaphrodites were mated with *qls54* males, and the frequency of Unc non-Dpy and Dpy non-Unc animals was quantified in the triploid male progeny (genotype 3A:2X). In the absence of recombination, these animals would bear a sister chromatid from each X homolog and therefore be of genotype *dpy-3(e27) unc-3(e151)/+* +. If CO recombination occurs but homologs later separate because of a defect in short arm cohesion, approximately 25% of animals in which recombination occurred in the ~40 cM that separate *dpy-3* and *unc-3* should be Dpy non-Unc or Unc non-Dpy. Because the progeny of *rec-8* mothers are occasionally Unc or Dpy, a parallel control was done using *rec-8(ok978)* single mutants. 4.5% (n=223) of males produced by control animals were Unc non-Dpy or Dpy non-Unc, compared to 3.5% (n=257) of males produced by the experimental set of worms. Thus, CO recombination does not occur at appreciable levels during oocyte meiosis of *rec-8* mutant worms.

Supplemental Methods

Validation of Chrll-RFLP data

Data for an entire 96-well PCR plate was discarded if any digests of DNA from control wells containing *n1012* and *n1020* homozygous embryos were incomplete. Data from all embryos collected from a single cross (mutant mother x *him-8*; *mls10* male) were discarded if all of the embryos from that cross had only one of the two ChrII-RFLPs, because the mother was not trans-heterozygous for the RFLP alleles. Data for a single PCR well were discarded if an uncut band was not detected in the Spe I Xba I double digest, because the embryo analyzed was not outcross.

5S rDNA FISH / DNA

Figure S1. Fluorescence *in situ* hybridization (FISH) demonstrates that zygotes produced by *rec-8(ok978)* mutant mothers inherit two copies of chromosome V during oocyte meiosis. Embryos were labeled with a FISH probe to the 5S rDNA locus (green) and DAPI (red). FISH spots mark the location of chromosome V in the polar bodies (pb), oocyte pronuclei (o) and sperm pronuclei (s). A single FISH spot, corresponding to a single copy of chromosome V, is detected in the haploid oocyte pronucleus of each wild-type embryo. Two FISH spots are detected in the oocyte pronucleus of each *rec-8* zygote, as expected because *rec-8* mutants inherit a sister chromatid from each homolog during oocyte meiosis (Fig. 2C).

Metaphase I Anaphase I/ Telophase I Metaphase II Anaphase II/ Telophase II Pronuclear Stage edu pine A</

A) GFP::Histone H2B

B) GFP::β-Tubulin

Figure S2. Polar body extrusion fails during meiosis II of rec-8 mutants.

Two rounds of polar body extrusion can be observed in wild-type zygotes expressing GFP::Histone H2B (A) and GFP:: β tubulin (B). (A) Homologous chromosomes separate in anaphase I, and one set of homologs is extruded into the first polar body (1). Sister chromatids separate in anaphase II, and one set of sisters is extruded into the second polar body (2). The second set of sisters decondenses to form the haploid oocyte pronucleus (pn). In contrast, a single polar body is extruded following the equational separation of sister chromatids that occurs in anaphase I of *rec-8(ok978)* mutants. Often, a failed attempt at polar body extrusion in anaphase II results in the formation of multiple pronuclei (pn). (B) Meiotic spindles (SP) assemble during meiosis I (SP 1) and meiosis II (SP 2) of wild-type and *rec-8* mutant zygotes. Thus, two rounds of meiosis occur in *rec-8* mutants, but polar body extrusion fails in meiosis II.

5 µm

Figure S3. *rec-8* mutations fail to block AE assembly and SCC. (A) In wild-type worms, HIM-3 and SYP-1 are present between synapsed pachytene chromosomes. HIM-3 is present in a cruciform on each bivalent in the -1 oocyte. Although HIM-3 levels are reduced in *rec-8(ok978)* mutants, long stretches of HIM-3 are clearly visible on pachytene chromosomes. SYP-1 also loads on pachytene chromosomes, but tracks of SYP-1 staining often appear fragmented. (B) Depletion of REC-8 by RNAi results in similar phenotypes to those we observed in *rec-8(ok978)* animals. SMC-1 and HTP-3 still associate with meiotic chromosomes in *rec-8*(RNAi) worms; however, SMC-1 levels appear reduced compared to those observed in wild-type worms. 12 univalents are present in diakinesis nuclei. Similar phenotypes are observed when RNAi is used to further reduce REC-8 activity in *rec-8(ok978)* mutants, consistent with the prediction that *ok978* is a null or strong loss-of-function allele (Hayashi et al. 2007). The meiotic phenotypes of *rec-8* mutants are not enhanced by a deletion allele of *lig-4*, consistent with the possibility that SCC is required to ensure that a sister chromatid is available for use as a repair template.

Severson_SuppFigS4

Figure S4. Disrupting REC-8, HTP-3, or HTP-1/2 function reduces the lethality of spo-11(me44) mutants. (A) Higher embryonic viability is observed in the self progeny of spo-11(me44) rec-8(ok978) double mutants than the self progeny of spo-11(me44) single mutants. (B) Weak suppression of spo-11(me44) results from RNAi-mediated depletion of REC-8. (C) The htp-3(y428) allele results in increased viability in the self progeny of spo-11(me44) worms. This suppression is recessive, as similar levels of embryonic lethality occur in the progeny of htp-3(y428) ccls4251/+; spo-11 mutant hermaphrodites as in *spo-11* controls. (D) Most of the self progeny of *htp-3*(*y428*) mothers hatch. Similar levels of hatching are observed in the progeny of htp-3(y428); spo-11(me44) animals (C), consistent with the requirement of HTP-3 in DSB formation. (E) Embryonic viability is markedly higher in the broods of htp-1 htp-2 double mutants than in htp-1 or him-3 single mutants, consistent with our data showing that equational sister separation occurs in htp-1 htp-2 animals, but not in htp-1 or him-3 animals. (F) Synergistic lethality occurs in the self progeny of htp-3(y428); rec-8(ok978) double mutants. Levels of embryonic lethality in the progeny of htp-3/+; rec-8 animals are similar to those observed in rec-8 single mutants, consistent with the recessive behavior of the htp-3(y428) allele. (G) RNAi depletion of HTP-3 in a rec-8(ok978) mutant worm results in dramatically higher levels of embryonic lethality than does depletion of HTP-1/2 or HIM-3, consistent with the involvement of HTP-3 in the loading of meiotic cohesin.

Severson_SuppFigS5

—— 5 µm

Figure S5. The redundant kleisin paralogs COH-3 and COH-4 are required for meiotic SCC. (A) Animals mutant for the *coh-4* deletion allele *tm1857*, the *coh-3* deletion allele *gk112*, or the *coh-3* Mos1 transposon insertion allele ttTi10553 produce healthy broods of hatching embryos. In contrast, most embryos produced by *coh-4(tm1857) coh-3(ttTi10553)* double mutants die before hatching, as occurs in *coh-4(tm1857) coh-3(gk112)* double mutants (Fig. 1E). Thus, COH-3 and COH-4 are likely redundant. Almost all progeny of *coh-4(tm1857) coh-3(ttTi10553)* / + heterozygous mothers hatch, suggesting that COH-3 and COH-4 are not essential during mitotic divisions (see also Supplemental Table 1). (B) Depleting COH-3/4 by RNAi does not result in equational sister separation in meiosis I. Instead, homologs appear to segregate randomly. (C) Discontinuous staining of AE proteins is detected on pachytene chromosomes of *coh-4(tm1857) coh-3(ttTi10553)* double mutants and *coh-3/4*(RNAi) animals. In contrast, AE proteins are detected in polycomplexes when COH-3 and COH-4 are disrupted in *rec-8(ok978)* mutants.

% Hatching

Figure S6. The *C. elegans* Mei-S332/Shugoshin ortholog SGO-1 appears dispensable for the accurate segregation of meiotic chromosomes. Embryonic lethality (A) and male production (B) are not observed in animals mutant for either of two *sgo-1* deletion alleles or following *sgo-1*(RNAi). (C) The high levels of embryonic lethality in the broods of *spo-11(me44)* mutants is not reduced by RNAi of *sgo-1*.

Figure S7. The *htp-3* deletion allele *tm3655* phenocopies *htp-3(y428)*. (A) Similar levels of embryonic lethality occur in the broods of *htp-3(tm3655)* and *htp-3(y428)* mutants. (B) *htp-3(tm3655)* disrupts association of the known AE proteins HTP-3, HTP-1/2, and HIM-3 with the axes of meiotic chromosomes, and the SC central element protein SYP-1 is present in polycomplexes. A similar phenotype occurs in *htp-3(y428)* mutants, suggesting that *htp-3(y428)* is a null or severe loss-of-function allele (Fig. 8). (C) REC-8 and SMC-1 are undetectable on meiotic chromosomes of *htp-3(y428)* mutants (Fig. 9).

Severson_SuppFigS8

В

wild type

htp-3(y428)

htp-1(gk174)

htp-2(tm2543)

– 5 µm

Figure S8. HTP-3 is required for AE assembly in transition zone nuclei. (A) HTP-3 is present in both premeiotic nuclei and meiotic nuclei, but first associates with axial structures in transition zone nuclei (leptotene and zygotene stages of prophase I). Meiotic loading of HTP-3 does not require HTP-1/2 or HIM-3. SYP-1 is present in polycomplexes in transition zone nuclei of *htp-3(y428)* mutants, as in *htp-3(RNAi)* animals (Goodyer et al. 2008). (B,C) HTP-3 is required for the association of HTP-1/2 and HIM-3 with meiotic chromosomes. (D) Like HTP-3, REC-8 is present in premeiotic nuclei but first appears enriched on the axis in transition zone nuclei. REC-8 is detectible in transition zone nuclei of *htp-3(y428)* animals; in contrast, REC-8 is present at markedly reduced levels in transition zone nuclei of *htp-3(y428)* animals, although it is present in premeiotic nuclei.

Figure S9. Bivalent structure changes around the time of fertilization and breakdown of the oocyte nuclear envelope. Before fertilization and NEBD, a slight gap separates the four chromatids in DAPI-stained nuclei (arrowheads). In contrast, separation between sisters is not visible after fertilization triggers NEBD and entry into prometaphase, but separation between homologs is obvious (arrowheads). AIR-2 (green) marks the short arm of the wild-type bivalent, where SCC will be released at anaphase I to allow homologs to separate. Before NEBD, a gap is visible between the two sister chromatids in the univalents of *spo-11(me44)*, *rec-8(ok978)*, and *htp-3(y428)* animals (arrowheads). After NEBD, the sisters are not visible in *spo-11* mutants, and our data indicate that sisters are held together while homologs segregate randomly in anaphase I. In contrast, a visible gap persists between sister chromatids after NEBD in *rec-8* and *htp-3* mutants (arrowheads), sister chromatid co-orientation fails and premature release of SCC in anaphase I causes equational separation of sister chromatids.

Figure S10. Chromosomes partition randomly during spermatogenesis of *rec-8* mutants, consistent with the possibility that both cytoplasmic divisions occur during spermatogenesis, and sister chromatids separate equationally during meiosis I and randomly during meiosis II. This pattern of segregation contrasts with that observed during occyte meiosis of *rec-8* mutants, in which zygotes inherit a sister chromatid from each homolog as a consequence of equational sister separation in meiosis I and defective polar body extrusion in meiosis II. Shown is the assessment of chromosome segregation in wild-type and *rec-8* mutant males using ChrII-RFLP analysis.

Genotype ^a	Embryonic Viability ^b	Survival to Adulthood ^c	
N2	98%	98%	
rec-8(ok978)	85%	54%	
spo-11(me44)	10%	7%	
ccls4251[myo-3::GFP]	97%	98%	
ccls4251[myo-3::GFP];	78%	34%	
ccls4251[myo-3::GFP];	7%	5%	
htp-3(y428) ccls4251[myo-3::GFP]	88%	39%	
htp-3(y428) ccls4251[myo-3::GFP]; rec-8(ok978)	24%	4%	
htp-3(y428) ccls4251[myo-3::GFP]; spo-11(me44)	88%	39%	
htp-1(gk174) htp-2(tm2543)	56%	15%	
htp-1(gk174)	8%	5%	
him-3(gk149)	10%	7%	
coh-4(tm1857)	12%	7%	
+ /coh-4(tm1857) coh-3(gk112) ^d	100%	99%	
rec-8(ok978); coh-4(tm1857) coh-3(gk112)	0.10%	0%	

Supplemental Table 1. Survival to adulthood of strains used in this study

^a Hermaphrodites of the genotypes listed were mated with *him-8(e1489)* IV; *mls10[myo-2::gfp*] males.

^b Embryonic viability was calculated as: (number of embryos that hatched)/(number of embryos laid)x100.

^c Survival to adulthood was calculated as: (number of adult worms)/(number of embyros that hatched)x100.

^d $\frac{1}{4}$ of embryos laid are expected to be *coh-4(tm1857) coh-3(gk112)* homozygotes. The high survival of these animals suggests that COH-3/4 do not have essential mitotic roles.

Chromosome	Segregation pattern		# of Polar	Expected frequency of Chrll-RFLPs				Oocyte
State	Meiosis I	Meiosis II	Bodies	A and B	Only A	Only B	Neither A or B	Ploidy
Bivalents ^a	Reductional ^c	Equational ^e	2	0%	50%	50%	0%	Haploid
Univalents ^b	Random ^d	Equational ^e	2	25%	25%	25%	25%	Aneuploid
Univalents ^b	Random ^d	None	1	25%	25%	25%	25%	Aneuploid
Univalents ^b	Equational ^e	Random ^f	2	25%	25%	25%	25%	Aneuploid
Univalents ^b	Equational ^e	None	1	100%	0%	0%	0%	Diploid
Univalents ^b	None	None	0	100%	0%	0%	0%	Tetraploid

Supplemental Table 2. Different patterns of meiotic chromosome segregation result in distinct phenotypes

^a Observed in wild-type animals. Homologs are held together by sister chromatid cohesion (SCC) and the crossover.

^b Observed in mutants that disrupt meiotic crossover recombination. Sister chromatids are held together by SCC, but homologs remain apart.

^c Homologs separate and move toward opposite spindle poles. Sister chromatids remain held together by SCC.

^d Homologs partition randomly between the embryo and the polar body. Sister chromatids remain held together by SCC.

^e Sister chromatids separate and move toward opposite spindle poles.

^f Sister chromatids partition randomly between the embryo and the polar body.

Supplemental Table 3. Strains used in this study

Strain	Genotype
RB0873	lig-4(ok716) III
TY5074	lig-4(ok716) III; rec-8 (ok978) / nT1 IV; + / nT1 [qls51] V
TY4960	rec-8(ok978) / nT1 IV; + / nT1 [qls51] V
TY4342	spo-11(me44) / nT1 IV; + / nT1 [qls51] V
TY4392	unc-119(ed3op) ruls32[unc-119(+) pie-1::gfp::his-11] III; rec-8(ok978) / nT1[unc-?(n754) let-?] IV; + / nT1 V
TY4393	rec-8(ok978) / nT1[unc-?(n754) let-?] IV; + / nT1 V; ruls57[unc-119(+) pie-1::gfp::tbb-2] ?
TY4544	rec-8(ok978) dpy-4(e1166) / nT1 IV; + / nT1 [qls51] V
TY4561	spo-11(me44) dpy-4(e1166) / nT1 IV; + / nT1 [qls51] V
TY4581	spo-11(me44) rec-8 (ok978) dpy-4(e1166) / nT1 IV; + / nT1 [qls51] V
TY4949	spo-11(me44) rec-8(ok978) / nT1 IV; + / nT1 [qls51] V
TY5001	rec-8(ok978) / nT1 IV; + / nT1 [qls51] V; dpy-3(e27) unc-3(e151) X
TY4939	ccls4251[myo-3::GFP] l; spo-11(me44) / nT1 [unc-?(n754) let-?(m435)] lV; + / nT1[qls51] V; lin-2(e1309) X
TY4980	htp-3(y428) ccls4251[myo-3::GFP] / + I; spo-11(me44) / nT1 IV; + / nT1 [qls51] V
TY4981	htp-3(y428) ccls4251[myo-3::GFP] / + I;
TY4986	htp-3(y428) ccls4251[myo-3::GFP] I / hT2[bli-4(e937) let-?(q782) qls48] (l;III)
TY5038	htp-3(tm3655) I / hT2[bli-4(e937) let-?(q782) qls48] (l;III)
TY5115	coh-4(tm1857) V
TY4918	coh-3(gk112) V
TY5114	coh-3(ttTi10553) V
TY5120	+ / nT1 IV; coh-4(tm1857) coh-3(gk112) V / nT1 [qls51] V
TY5119	+ / nT1 IV; coh-4(tm1857) coh-3(TTtl10553) V / nT1 [qls51] V
TY5121	rec-8(ok978) / nT1 IV; coh-4(tm1857) coh-3(gk112) / nT1 [qls51] V
TY5122	rec-8(ok978) / nT1 IV; coh-4(tm1857) coh-3(ttTi10553) / nT1 [qls51] V
TY5130	htp-3(y428) ccls4251[myo-3::GFP] I / hT2[bli-4(e937) let-?(q782) qls48] (l;III); coh-4(tm1857) coh-3(gk112) / nT1[unc-?(n754) let-?] IV; + / nT1 V
TY5129	htp-3(y428) ccls4251[myo-3::GFP] I / hT2[bli-4(e937) let-?(q782) qls48] (l;III); coh-4(tm1857) coh-3(ttTi10553) / nT1[unc-?(n754) let-?] IV; + / nT1 V
VC0418	him-3(gk149) / nT1 IV; + / nT1 [qls51] V
TY4973	htp-1(gk174) / nT1 IV; + / nT1 [qls51] V
FM0002	htp-1(gk174) htp-2(tm2543) / nT1 IV; + / nT1 [qls51] V
TY4236	him-8(e1489) IV; mls10 V
FX2344	sgo-1(tm2344) IV
TY4878	sgo-1(tm2443) IV

Strain	Genotype
CB0879	him-1(e879) I
TY3090	him-1(h55) / unc-63(e384) I
JK2735	qls54 X
TY4985	ccls4251[myo-3::GFP]
TY4851	sup-9(n1012) II
TY4852	sup-9(n1020) II
TY5131	sup-9(n1012) II; rec-8(ok978) / nT1 IV; + / nT1 [qls51] V
TY4894	sup-9(n1020) II; rec-8(ok978) / nT1 IV; + / nT1 [qls51] V
TY4895	sup-9(n1012) II; spo-11(me44) / nT1 IV; + / nT1 [qls51] V
TY4896	sup-9(n1020) II; spo-11(me44) / nT1 IV; + / nT1 [qls51] V
TY4916	sup-9(n1012) II; rec-8(ok978) dpy-4(e1166) / nT1 IV; + / nT1 [qls51] V
TY4897	sup-9(n1020) II; rec-8(ok978) dpy-4(e1166) / nT1 IV; + / nT1 [qls51] V
TY4898	sup-9(n1012) II; spo-11(me44) dpy-4(e1166) / nT1 IV; + / nT1 [qls51] V
TY4899	sup-9(n1020) II; spo-11(me44) dpy-4(e1166) / nT1 IV; + / nT1 [qls51] V
TY4930	sup-9(n1012) II; spo-11(me44) rec-8(ok978) dpy-4(e1166) / nT1 IV; + / nT1 [qls51] V
TY5132	sup-9(n1020) II; spo-11(me44) rec-8(ok978) dpy-4(e1166) / nT1 IV; + / nT1 [qls51] V
TY4965	sup-9(n1012) II; htp-1(gk174) / nT1 IV; + / nT1 [qls51] V
TY4966	sup-9(n1020) II; htp-1(gk174) / nT1 IV; + / nT1 [qls51] V
TY4999	sup-9(n1012) II; htp-1(gk174) htp-2(tm2543) / nT1 IV; + / nT1 [qls51] V
TY5000	sup-9(n1020) II; htp-1(gk174) htp-2(tm2543) / nT1 IV; + / nT1 [qls51] V
TY4968	sup-9(n1012) II; him-3(gk149) / nT1 IV; + / nT1 [qls51] V
TY4967	sup-9(n1020) II; him-3(gk149) / nT1 IV; + / nT1 [qls51] V
TY5127	sup-9(n1012) II; coh-4(tm1857) coh-3(gk112) V/nT1[qls51] (IV;V)
TY5128	sup-9(n1020) II; coh-4(tm1857) coh-3(gk112) V/nT1[qls51] (IV;V)
TY5125	sup-9(n1012) II; coh-4(tm1857) coh-3(ttTi10553) V/nT1[qIs51] (IV;V)
TY5126	sup-9(n1020) II; coh-4(tm1857) coh-3(ttTi10553) V/nT1[qIs51] (IV;V)
TY4987	htp-3(y428) ccls4251[myo-3::GFP] l / hT2[bli-4(e937) let-?(q782) qls48] (l;III); sup-9(n1012) ll
TY4988	htp-3(y428) ccls4251[myo-3::GFP] l / hT2[bli-4(e937) let-?(q782) qls48] (l;III); sup-9(n1020) ll
TY4962	htp-3(y428) ccls4251[myo-3::GFP]/+ l; sup-9(n1012) ll; spo-11(me44) / nT1 lV; + / nT1 [qls51] V
TY4963	htp-3(y428) ccls4251[myo-3::GFP]/+ l; sup-9(n1020) ll; spo-11(me44) / nT1 lV; + / nT1 [qls51] V

Supplemental Table 3. Strains used in this study (continued)

Name	Gene	Sequence (T7 in bold)
AFS75 ^ª	rec-8	TAATACGACTCACTATAGGGGTTGTCTCTGCGGAAGT
AFS76 ^ª	rec-8	TAATACGACTCACTATAGGGCTCAGGTAAGGCTCAACA
AFS268	htp-3	TAATACGACTCACTATAGGAAGTCCCATCTACGGTCGTG
AFS269	htp-3	TAATACGACTCACTATAGG CTTTGGAGGGTTTGGTTTGA
AFS279	htp-1	TAATACGACTCACTATAGG CGTCTGGATAGGCGACATTT
AFS280	htp-1	TAATACGACTCACTATAGGCATCTACGACGAATCGCTCA
AFS283	him-3	TAATACGACTCACTATAGGTCCCGTTGATCTAGAGATTGAAA
AFS284	him-3	TAATACGACTCACTATAGG ACAAGAGAAGACAAAAGCACGAC
AFS191	him-1	GCG TAATACGACTCACTATAGG GAAGGCAGAGAACAACTCGACTCAG
AFS192	him-1	CGC TAATACGACTCACTATAGG GATCAGCAGAACCTCCGGACATA
AFS193 ^{b,c}	coh-3 5'	TAATACGACTCACTATAGGATTCGTGCTCGAGAGATCGT
AFS194 ^{b,c}	coh-3 5'	TAATACGACTCACTATAGGCGGTTTGGAGTTCCAGTTGT
AFS308 ^{b,d}	coh-3 3'	TAATACGACTCACTATAGGTGGTCAAATACAAGTTCTGA
AFS309 ^{b,d}	coh-3 3'	TAATACGACTCACTATAGGAGAAATCAGCCATTGCCAGA
AFS79	sgo-1	TAATACGACTCACTATAGGAGCTTGTCGTCAGTCTCGGT
AFS80	sgo-1	TAATACGACTCACTATAGGTGCAGGAGTTGATGATGGAG

Supplemental Table 4. Oligos used for amplification of dsRNA templates

^a dsRNA corresponding to Exons 1-4 was used for depletion of REC-8 because this region is not affected by the *rec-8*(*ok*978) deletion. Similar results were obtained using the primers and depletion regime described in Colaiácovo (2003).

^b dsRNA corresponding to nonoverlapping 5' and 3' regions of the *coh-3* ORF with no significant homology gave similar phenotypes in RNAi experiments, indicating that the phenotypes observed did not result from off target depletion of another cohesin subunit.

^c The 1674 bp amplicon corresponds to 1263 bp of cDNA, which is 88% identical to the paralogous region of the Y45G5AM.8 cDNA.

^d The 381 bp amplicon corresponds to 283 bp of cDNA, which is 89% identical to the paralogous region of the Y45G5AM.8 cDNA.